Motility, proliferation, and egress to the circulation of human AML cells are elastase dependent in NOD/SCID chimeric mice.

نویسندگان

  • Sigal Tavor
  • Isabelle Petit
  • Svetlana Porozov
  • Polina Goichberg
  • Abraham Avigdor
  • Sari Sagiv
  • Arnon Nagler
  • Elizabeth Naparstek
  • Tsvee Lapidot
چکیده

The role of the proteolytic enzyme elastase in motility and proliferation of leukemic human acute myeloblastic leukemia (AML) cells is currently unknown. We report a correlation between abnormally high levels of elastase in the blood of AML patients and the number of leukemic blast cells in the circulation. In AML cells, we observed expression of cell-surface elastase, which was regulated by the chemokine stromal cell-derived factor-1 (SDF-1). In vitro inhibition of elastase prevented SDF-1-induced cell polarization, podia formation, and reduced migration of human AML cells as well as their adhesion. Elastase inhibition also significantly impaired in vivo homing of most human AML cells to the bone marrow (BM) of nonobese diabetic-severe combined immunodeficient (NOD/SCID)/beta-2 microglobulin knock-out (B2m null) mice that underwent transplantation. Moreover, in vitro proliferation of AML cells was elastase dependent. In contrast, treatment with elastase inhibitor enhanced the proliferation rate of human cord blood CD34+ cells, including primitive CD34+/CD38- cells, and their in vivo homing. Finally, NOD/SCID mice previously engrafted with human AML cells and treated with elastase inhibitor had significantly reduced egress of leukemic cells into the circulation. Taken together, our data demonstrate that human AML cells constitutively secrete and express SDF-1-dependent cell-surface elastase, which regulates their migration and proliferation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice.

The chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 participate in the retention of normal hematopoietic stem cells within the bone marrow (BM) and their release into the circulation. Homing and engraftment of human stem cells in immunodeficient mice are dependent on cell surface CXCR4 expression and the production of BM SDF-1, which acts also as a survival factor for bot...

متن کامل

MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization.

The mechanisms governing hematopoietic progenitor cell mobilization are not fully understood. We report higher membrane type 1-MMP (MT1-MMP) and lower expression of the MT1-MMP inhibitor, reversion-inducing cysteine-rich protein with Kazal motifs (RECK), on isolated circulating human CD34+ progenitor cells compared with immature BM cells. The expression of MT1-MMP correlated with clinical mobil...

متن کامل

AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML.

The nonobese diabetic/severe combined immunodeficient (NOD/SCID) assay is the current model for assessment of human normal and leukemic stem cells. We explored why 51% of 59 acute myeloid leukemia (AML) patients were unable to initiate leukemia in NOD/SCID mice. Increasing the cell dose, using more permissive recipients, and alternative tissue sources did not cause AML engraftment in most previ...

متن کامل

Chronic Myelogenous Leukemia Cells Contribute to the Stromal Myofibroblasts in Leukemic NOD/SCID Mouse In Vivo

We recently reported that chronic myelogenous leukemia (CML) cells converted into myofibroblasts to create a microenvironment for proliferation of CML cells in vitro. To analyze a biological contribution of CML-derived myofibroblasts in vivo, we observed the characters of leukemic nonobese diabetes/severe combined immunodeficiency (NOD/SCID) mouse. Bone marrow nonadherent mononuclear cells as w...

متن کامل

Arrest of human dendritic cells at the CD34-/CD4+/HLA-DR+ stage in the bone marrow of NOD/SCID-human chimeric mice.

Human dendritic cell (DC) precursors were engrafted and maintained in NOD/SCID- human chimeric mice (NOD/SCID-hu mice) implanted with human cord blood mononuclear cells, although no mature human DCs were detected in lymphoid organs of the mice. Two months after implantation, bone marrow (BM) cells of NOD/SCID-hu mice formed colonies showing DC morphology and expressing CD1a in methylcellulose c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 106 6  شماره 

صفحات  -

تاریخ انتشار 2005